

Martin Willett October 2016 GAS SENSORS FOR PORTABLE APPLICATIONS – CHALLENGES AND OPPORTUNITIES

Outline

Portable Industrial Gas Detection

City Technology – company background Today's Industrial Safety markets

Requirements for Portable Gas Detection

Key attributes of a good gas sensor

Common Sensing Techniques

Widely used approaches Main strengths & weaknesses

Further Ahead

New markets – impact of Internet of Things (IoT) Technologies offering new opportunities

City Technology - Evolution

Research at Wolfson Unit Development of Pellistor technology Longer life sensors (O_2 etc) City Technology founded 1977 Increased range of toxic sensors More robust & reliable Developed first oxygen sensor **New applications** Smaller & lower power **1970s** 1990s TODAY CAPTEUR S SensoriC Honeywe 1980s 2000s Exotic toxic gas sensors (Sensoric) Developed toxic sensor range Help to drive H&S practise **Optical sensors (NDIR)** Miniature gas sensors Semiconductor sensors World leading manufacturer of gas sensors

Honeywell Confidential - © 2016 by Honeywell International Inc. All rights reserved.

Long history of innovation

for industrial safety

Applications

Oil & Gas	Chemical & Petrochemical	Power & Utilities	Water & Waste	Emissions
Exploration, production & transportation of oil & gas: primary refining of crude oil	Production of chemicals from organic & inorganic feed stocks – including refined products	Generation & distribution of power from coal, oil, gas and nuclear fuel	Water distribution, waste water treatment & supply of water to homes & industry	Spot-check monitoring emissions from boilers / furnaces in domestic & industrial environments

Typical users – workers in hazardous zones & confined spaces

Honeywell Confidential - © 2016 by Honeywell International Inc. All rights reserved.

Critical life safety applications

Requirements

Sensitivity

Most users require measurements at regulatory alarm concentrations

Selectivity

Cross interference can lead to false alarms

Speed of response

Time to alarm is critical - toxic, asphyxiating & explosive hazards

Power consumption

Battery life in instruments has practical consequences (cf mobile phone charging)

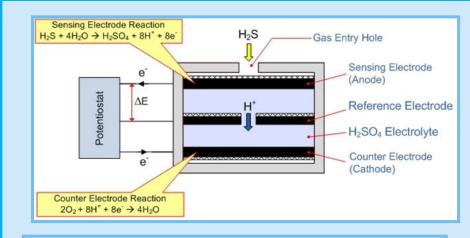
Environmental performance

Temperature (-40 to +55C); humidity (0-100%RH); pressure; dust... Steady state and transient changes

Cost

Purchase price of sensors is only part of the total cost of ownership

Stability & calibration requirements


Short- and long-term drift will reduce reliability of the output Calibration & testing can represent a major cost

Life

Users expect long life (years) – not disposable products

Complex mixture of demands

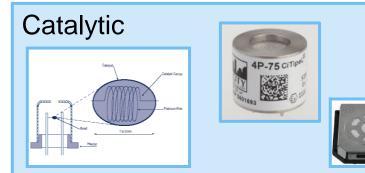
Common Sensing Techniques (1) - Electrochemical

Electrodes – precious metal (Pt black) on PTFE tape Electrolytes – strong acid (H_2SO_4) Wicks and separators - retain & transport electrolyte Target gas reaction - sensing electrode

Balancing reaction - counter electrode

Reference electrode (optional) - maintains sensing electrode at optimum potential via potentiostat

Similar approach for range of toxic gases and oxygen pumps; no consumable parts

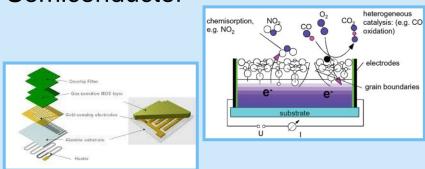

Consumable anode approach (using lead) also available for oxygen

- Zero or very low power
- Sensitive (ppm) and selective wide range of target gases
- Fast response (few seconds)
- Contraction Low cost
- © Simple instrument integration
- Proven long term field experience
- Meet overwhelming majority of requirements
- Extreme environmental performance limited by electrolytes
- \bigotimes Not a good solution for flammable gases (or CO₂)

Honeywell Confidential - © 2016 by Honeywell International Inc. All rights reserved.

Well established – industry standard

Common Sensing Techniques (2)



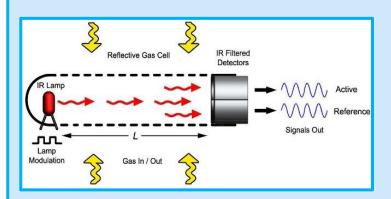
Microcalorimeter

Platinum wire coil and refractory bead with catalyst Heat to ~500C by passage of current Flammable gas reacts with oxygen at surface *Hydrocarbon* + $O_2 \rightarrow CO_2 + H_2O + heat$ Detect resulting change in coil resistance No consumable element

- C Well understood, widely accepted
- © Flammability indication across many compounds
- Relatively low cost
- Power Consumption up to 230mW for beads (improved with MEMs substrate)
- 8 Silicones etc can permanently poison catalyst
- 8 Not failsafe need regular calibrations.

Semiconductor

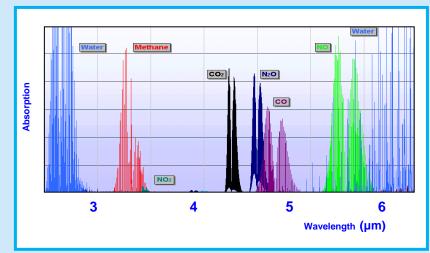
Porous semiconducting metal oxide Chemically adsorbed oxygen on surface - **[O]ads** Can react with many gases when heated (100-600°C) Change in **[O]ads** alters oxide electrical resistance No consumable element


- Cheap to produce (in volume)
- Can be small and mechanically robust
- © Can operate over wide environmental range
- 8 Consume milliwatts even with MEMS substrates
- 8 Output depends on environmental conditions
- Sensitivity typically drifts over time (regular calibration required)
- 8 Prone to poisoning
- 8 Not very selective
 - (can be an advantage for 'air quality' applications)

Honeywell Confidential - © 2016 by Honeywell International Inc. All rights reserved.

High temperature gas-surface interactions

Common Sensing Techniques (3) - Optical


Non Dispersive Infra Red

Sources and detectors – thermal or photonic Bulb, MEMs hotplate, LED Thermopile, pyroelectric, photodiode

Many gases have IR absorptions due to molecular rotation & vibration Broadband source / interference filter selects required region of spectrum

- Immune to chemical poisoning
- Photonic components can be very low power
- Component costs have historically been high
- Thermal sources are slow & power hungry
- Pathlength dependence of absorption

Honeywell Confidential - © 2016 by Honeywell International Inc. All rights reserved.

Improved components \rightarrow new opportunities

Comparison Table

	Electrochemical	Catalytic	Optical	Semiconductor
Sensitivity				
Selectivity				
Power				
Speed				
Cost				
Lifetime				
Environmental				
Stability				
Oxygen				
Toxic (excl CO ₂)				
Flammable				
VoC				

Strength

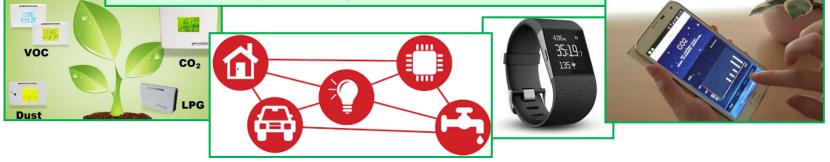
Weakness

Honeywell Confidential - © 2016 by Honeywell International Inc. All rights reserved.

No solution meets all requirements

New Opportunities - Industrial Gas Sensing & Beyond

Miniaturisation


New sensor approaches \rightarrow smaller devices and easier integration Combine with other personal protective equipment (masks, clothing) More sensors in more places

Connectivity

Improved wireless and other communication methods – **beyond the instrument** Integrate gas detection with location monitoring, biological sensing etc Use of cloud computing to process data & increase information content The 'Connected worker'

New Markets – The Internet of Things

Interconnected control / wider availability of information Greater awareness of environmental issues (especially China) Rise in personal gas sensing capabilities

Honeywell Confidential - © 2016 by Honeywell International Inc. All rights reserved.

Improved offerings for industrial and consumer markets

0

Routing Nod

Thank You

Any Questions?

